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Abstract—Underwater object detection (UOD) is critical for
enabling autonomous underwater vehicles (AUVs) to carry
out underwater operations incomplex marine environments.
However, the underwater domain poses severe challenges for
visual perception due to low visibility, color distortion, and
dynamic noise. To address these issues, Hybrid Attention
Driven Dynamic Network (HAD-Net), which integrated a novel
dynamic convolution module named FDConv (Full-Dimensional
Convolution) was proposed. Unlike existing dynamic convolution
approaches that only adapt over the kernel number dimension,
FDConv introduced a four-way attention mechanism across
the channel, filter, spatial, and kernel dimensions, enabling
precise and adaptive feature modulation. By embedding FDConv
into a YOLOv11-based detection framework, HAD-Net achieved
superior performance in challenging underwater scenarios.
Extensive experiments on the URPC2020 and TrashCan datasets
demonstrated that HAD-Net outperforms existing detectors in
both accuracy and robustness, while maintaining real-time
inference speed. Our method provides a lightweight and
deployable solution for perception tasks for autonomous
underwater vehicles (AUVs).

Index Terms—Underwater object detection (UOD), Hybrid
Attention, Lightweightness, Autonomous Underwater Vehicles
(AUVs)

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) [1], [2]
have become indispensable tools in advancing scientific
investigations and technological endeavors within marine
exploration and resource development [3]. Capable of
operating at extreme depths, these robotic systems perform
complex subaquatic missions in environments marked by
formidable challenges and dynamic conditions [4], thus
serving as reliable alternatives to human intervention in
high-risk oceanic operations [5]. Underwater object detection
(UOD) is a crucial method by which AUVs can delve into
the mysteries of the ocean. Accurate detection allows AUVs
to identify, locate and track objects or entities within the
ocean, which is essential for tasks such as seabed mapping,

Fig. 1. Algorithm-Performance Comparison with the SOTA. The size of a
circle represents its parameter count

environmental monitoring, and underwater archaeology.
However, underwater environments present unique challenges
for visual object detection, such as low visibility, color
distortion, backscatter noise, and limited lighting conditions
[6]. These factors hinder the transmission and quality of
optical data, resulting in blurry, noisy, and poorly contrasted
images. Traditional object detection algorithms that perform
well in air, such as those used in terrestrial robotics [7], often
fail in underwater settings due to drastically different lighting
and visibility conditions. To overcome these challenges,
various UOD approaches [8] have incorporated Underwater
Image Enhancement (UIE) techniques as a preprocessing
step [9]. However, UIE methods do not always translate
into better detection outcomes and can occasionally reduce
detection accuracy due to the introduction of domain shifts
that alter image distributions. To mitigate this, Dai et al. [10]
proposed GCC-Net, which integrates features from both raw
and enhanced images to promote better domain adaptation.
In parallel, other strategies such as contrastive learning
frameworks [11] have aimed to improve generalization across
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domains through advanced data augmentation. Furthermore,
Zhou et al. [12] developed AMSP-UOD, a method that
focuses on suppressing underwater noise during feature
extraction, further enhancing the robustness of detection in
underwater conditions.

Recent advances in dynamic convolution methods, such
as CondConv [13] and DyConv [14], have significantly
improved network adaptability by enabling input-conditioned
convolution. These methods adjust the convolution kernel
at runtime based on the input, allowing for better feature
representation under varying conditions [15]. However,
existing dynamic convolution methods primarily exploit
attention along the kernel number dimension. While they
improve adaptability, they fail to fully leverage other essential
dimensions, such as spatial, channel, and filter dimensions,
which are crucial for underwater object detection. This
limitation hinders their capacity to adapt effectively to
complex, dynamic, and noise-prone underwater environments.
To address this issue, HAD-Net, a Hybrid Attention Driven
Dynamic Network was designed specifically for underwater
object detection. HAD-Net integrates FDConv into the
YOLO11 backbone architecture [16], a popular real-time
object detection model. This hybrid approach allows us to
combine the strengths of dynamic convolutions and attention
mechanisms, leveraging multi-dimensional attentions to refine
feature extraction without introducing excessive computational
overhead. HAD-Net aims to improve detection accuracy and
robustness in underwater environments, while maintaining
real-time performance for AUV-based missions.

The contributions of this paper are as follows:
1) FDConv was proposed, a novel full-dimensional dynamic

convolution mechanism that integrates multi-dimensional
attention across spatial, channel, filter, and kernel dimensions,
ensuring both global scene understanding and fine-grained
detail retention.

2) HAD-Net was introduced, a hybrid architecture that
incorporates FDConv into a YOLO11-based detector, allowing
the model to dynamically adapt its receptive fields and kernel
responses according to varying underwater conditions and
significantly improving accuracy and robustness in underwater
object detection.

3) HAD-Net was validated on two underwater datasets
(URPC2020 and TrashCan [17]) and demonstrated its superior
performance compared to existing methods.

II. METHODOLOGY

A. Architecture of HAD-Net

HAD-Net consists of three main components: the backbone,
the neck, and the head. Each of these components is designed
to leverage the multi-dimensional attention mechanism to
enhance the model’s performance while maintaining efficiency,
as shown in Fig. 2. The backbone of HAD-Net is
based on CSPDarkNet, a lightweight and efficient feature
extractor designed for real-time object detection. In HAD-Net,
several standard convolutional layers are replaced with
Full-Dimensional Convolution (FDConv) blocks to introduce

dynamic feature recalibration. The FDConv layers are applied
across multiple stages of the backbone to allow the model to
learn spatially adaptive kernel responses and channel-specific
attention. The backbone is responsible for processing the
raw input image into a set of high-level features, which are
subsequently refined by the neck. The backbone is responsible
for extracting hierarchical feature representations from the
input image. It begins with standard convolutional layers and
is followed by repeated applications of the FDConv module
and the C3K2 residual block. FDConv integrates three types
of attention mechanisms: Kernel Attention, Spatial Attention,
and Channel Attention. These attention paths operate in
parallel and are adaptively fused based on their learned
importance. The backbone also incorporates the Spatial
Pyramid Pooling-Fast (SPPF) module to encode multi-scale
context, and the C2PSA module in later stages to suppress
background noise and refine spatial information. The neck
module bridges the backbone and the detection head. It
adopts a feature pyramid structure that utilizes upsampling and
concatenation operations to merge low-level spatial features
and high-level semantic features. Alternating C3K2 and
FDConv modules are employed to maintain feature integrity
and enhance representation across scales. The detection head
consists of three output branches, each corresponding to a
specific scale. Each branch includes C3K2 blocks followed
by convolutional layers for object classification, bounding box
regression, and objectness scoring. This multi-scale design
improves the network’s ability to detect objects of varying
sizes.

B. Full-Dimensional Convolution

1) Attention in Spatial, Channel, Filter, and Kernel
Dimensions: The FDConv module introduces an
omni-directional attention mechanism that enables the
network to dynamically adapt convolutional operations based
on both the characteristics of the input features and the
convolutional kernel parameters. Unlike traditional dynamic
convolutions that typically focus on a single axis, FDConv
explicitly decomposes the dynamic reweighting process into
four semantically meaningful and complementary attention
branches:

• Channel-wise Attention (αc): Captures inter-channel
dependencies within the input feature map, allowing the
model to suppress redundant information and emphasize
informative channels.

• Filter-wise Attention (αf ): Learns to scale the responses
of different filters in the convolutional layer, enabling
adaptive emphasis on more relevant output feature maps.

• Spatial-wise Attention (αs): Assigns varying importance
to different spatial positions within each convolutional
kernel (e.g., each location in a 3 × 3 kernel),
which is particularly beneficial in modeling spatially
heterogeneous patterns, such as those commonly
encountered in underwater visual environments.

• Kernel-wise Attention (αw): Performs soft selection
over a set of parallel convolutional kernels, enabling
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Fig. 2. The overall framework of HAD-Net

Fig. 3. Hybrid Attention-Driven Computation Flow

content-adaptive interpolation between multiple kernels
for enhanced flexibility.

All four attention weights are derived from a shared global
descriptor of the input feature map, which is generated via
global average pooling. This descriptor is then processed
through a lightweight bottleneck structure consisting of a
Conv1×1, BatchNorm, and ReLU (CBR) block, before being
passed to four parallel branches responsible for producing αc,
αf , αs, and αw respectively.

2) Comparison with CondConv and DyConv: While
prior dynamic convolution variants such as CondConv and
DyConv enhance model capacity by introducing kernel-wise

modulation, they are limited by their unidimensional
scope—focusing only on αw and ignoring potentially rich
semantics embedded in spatial and channel dimensions.

In contrast, FDConv holistically considers multiple
structural axes of convolution. Specifically, it enables:
Identification of critical input channels via αc, emphasis on
informative filter responses via αf , differentiation of spatial
locations in convolutional operations via αs, and adaptive
kernel blending via αw. This enables FDConv to realize a
more fine-grained and content-aware feature transformation.
The general dynamic convolution operation of FDConv can
be expressed as:

y =

(
n∑

i=1

αw
i ⊙ αf

i ⊙ αc
i ⊙ αs

i ⊙Wi

)
∗ x (1)

Here, Wi represents the i-th kernel in the kernel bank, and
the attention coefficients perform multiplicative modulation
across different axes before convolution.

3) Hybrid Attention-Driven Computation Flow: Fig. 3
illustrates the overall computation flow of FDConv. The
process unfolds as follows:

Given an input feature map x ∈ RB×Cin×H×W , global
average pooling is applied to extract a global descriptor with
shape B × Cin × 1× 1.

This descriptor is passed through a shared CBR bottleneck
block to reduce dimensionality and enrich feature abstraction.

The resulting embedding is split into four branches:
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• Channel attention αc is used to recalibrate the input
feature map: x′ = x · αc.

• Spatial attention αs and kernel attention αw are used to
compute the content-aware aggregated kernel:

Wagg =

n∑
i=1

αw
i · αs

i ·Wi (2)

where αs
i ∈ Rk×k is the spatial weighting mask, and

Wi ∈ RCout×Cin×k×k is the i-th kernel in the bank.
• Convolution is performed using Wagg, and the result is

modulated by filter attention αf .
The final output is computed as:

y = Conv2D(x′,Wagg) · αf (3)

By integrating all axes of attention in a unified framework,
FDConv achieves spatially adaptive and instance-aware
dynamic feature processing.

Despite the inclusion of multiple attention branches, the
computational overhead is minimal due to the use of shared
pooling and projection layers, compact representations (e.g.,
1×1 descriptors), and efficient broadcasting mechanisms. This
lightweight design ensures that FDConv remains suitable for
real-time applications, particularly in scenarios such as AUVs
and embedded vision systems.

III. EXPERIMENTAL RESULTS

A. Datasets and Evaluation Metrics

1) Datasets: We evaluate HAD-Net on URPC2020
and TrashCan [17]. URPC dataset, employed in the
Underwater Robot Professional Contest (URPC), encompasses
a substantial collection of 5543 underwater images designated
for training purposes. Additionally, it includes 1,200 images
from its B-list answers, serving as the test set. This dataset
spans across four distinct categories of underwater organisms,
namely echinus, holothurian, scallop, and starfish, offering
a diverse range of visual data for analysis and machine
learning applications. TrashCan [17] represents a significant
contribution to the field of instance segmentation annotation,
specifically tailored for the challenging domain of underwater
debris identification. This comprehensive dataset encompasses
16 distinct categories, not only capturing various types of
garbage but also incorporating remotely operated vehicles
(ROVs) and a rich diversity of underwater flora and fauna,
thereby providing a robust resource for advancing research in
this specialized area.

2) Evaluation Metrics: In this paper, the results adhere
to the standard COCO-style Average Precision (AP) metrics,
encompassing AP, AP50 (IoU=0.5), and AP75 (IoU=0.75).
The AP score is calculated by averaging across various IoU
thresholds, ranging from 0.5 to 0.95, with a step size of 0.05.

B. Implementation Details

The proposed model was trained on a single NVIDIA
GeForce RTX 4090 GPU, employing the SGD optimizer with
a weight decay factor of 0.0005 and a momentum of 0.937.

The training configurations specified an input image size of
640×640 pixels, a batch size of 16, and a fixed random seed
of 0 to guarantee reproducibility. Initially, the learning rate
was set at 0.01, utilizing a schedule compatible with SGD,
and the model underwent training for 300 epochs. Notably,
no pre-trained weights were utilized during the initialization
process (”Weights: None”).

C. Comparisons with the SOTA

We compared HAD-Net with several SOTA methods on
URPC2020 , and TrashCan [17]datasets. The results are shown
in Table I and Table II.

1) Results on URPC : HAD-Net (Ours) demonstrates
outstanding performance on the URPC dataset, outperforming
several SOTA methods. Specifically, HAD-Net has a
maximum AP50 of 88.5 and AP75 of 76.8. As shown in the
tableI, HAD-Net consistently outperforms all other methods
in both AP50 and AP75 metrics. Compared to the SOTA
GCC-Net [10] method, our model achieved a performance
gain of 0.7% in AP50 and 0.5% in AP75. Furthermore,
compared to the YOLO11 [16] model, our model demonstrates
improvements of 0.2% in AP50 and 2.9% in AP75. These
results validate the effectiveness of our proposed method.

HAD-Net establishes a WDM architecture that combines
wavelet-based decomposition with convolutional processing.
This hybrid design allows our model to effectively capture
both global structure (low-frequency) and fine-grained details
(high-frequency). Additionally, we introduced a WAD that
preserves both high-frequency and low-frequency features
during resolution reduction, dynamically and adaptively
retains the core parts of high-frequency and low-frequency
featuressignificantly improving detection performance in
underwater environments.

Moreover, as evident from the Table I and Fig. 1, HAD-Net
has a relatively low number of GLOPs (Floating Point
Operations), which translates to lower computational cost
during inference. This makes it more efficient for deployment
on AUVs with limited computational power, offering
a practical solution in real-world applications compared
to other larger, more computationally intensive models.
HAD-Net strikes an efficient balance between accuracy
and speed, making it particularly well-suited for real-time
decision-making in dynamic underwater environments.

2) Results on TrashCan [17]: For TrashCan [17] datasets,
we present the performance of HAD-Net and compare it
with several SOTA methods. As shown in TableII, HAD-Net
demonstrates superior performance across all three datasets.
Specifically, it achieves the highest AP and AP50 scores in
the TrashCan [17] datasets, outperforming other methods such
as GCC-Net [10] and ERL-Net [21]. These results highlight
the effectiveness of the proposed architecture in capturing
both local and global features in challenging underwater
environments.

In summary, HAD-Net has demonstrated significant
advancements in underwater object detection, providing robust
and efficient performance across a variety of underwater
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TABLE I
PERFORMANCE COMPARISON ON THE URPC DATASET. BOLD AND UNDERLINE INDICATE THE BEST AND SECOND-BEST RESULTS IN EACH COLUMN.

GOD IS GENERIC OBJECT DETECTION, UOD IS UNDERWATER OBJECT DETECTION

Methods AP↑ AP50↑ AP75↑ echinus holothurian scallop starfish Params (M)↓ GFLOPs↓

G
O

D

RetinaNet 57.8 78.9 63.0 79.4 68.2 51.1 74.9 55.38 83.2
Faster R-CNN 61.2 82.7 69.6 70.4 61.4 41.9 71.4 41.3 120

Cascade R-CNN 61.6 80.5 72.4 69.0 61.9 41.9 72.0 88.15 140
DetectoRS 60.8 81.4 69.3 69.5 60.9 41.1 70.2 123.23 90.03
YOLOv7 49.8 85.4 64.2 73.7 66.3 50.8 74.5 6.2 13.8

YOLOv8 [18] 59.1 88.1 72.8 95.2 84.8 84.7 90.9 3.2 8.7
YOLO11 [16] 59.7 88.3 73.9 95.4 82.7 84.2 91.2 2.6 6.3

U
O

D

Boosting R-CNN [19] 63.7 79.0 72.3 70.0 64.3 46.6 74.8 45.95 169
RoIAttn [20] 62.2 82.8 69.5 70.7 62.2 40.5 71.4 55.23 331.7
ERL-Net [21] 63.7 81.9 72.2 70.8 66.6 45.4 73.7 45.95 54.8
GCC-Net [10] 69.1 87.8 76.3 75.2 76.7 68.2 56.3 38.31 79

AMSP-UOD [12] 40.1 78.5 – 87.5 60.6 42.5 77.5 10.4 23.8
HAD-Net (Ours) 60.3 88.5 76.8 95.6 85.5 85.3 91.0 3.4 6.2

Fig. 4. Visualization of HAD-Net

TABLE II
BENCHMARKING RESULTS BETWEEN HAD-NET AND OTHER SOTA

METHODS ON TRASHCAN [17]

Methods AP↑ AP50↑

G
O

D

RetinaNet 29.4 53.8
Faster R-CNN 31.2 55.3

Cascade R-CNN 33.6 52.7
YOLOv7 26.1 48.8

YOLOv8 [18] 44.2 61.5
YOLO11 [16] 45.1 61.9

U
O

D

Boosting R-CNN [19] 36.8 57.6
RoIAttn [20] 32.5 56.8
ERL-Net [21] 37.0 58.9
GCC-Net [10] 41.3 61.2

HAD-Net (Ours) 45.5 62.3

environments. By integrating dynamic convolution through
FDConv and leveraging a hybrid attention mechanism,
HAD-Net outperforms existing state-of-the-art methods in
terms of both detection accuracy and computational efficiency.
Its ability to adapt to the challenging conditions of underwater
environments, such as low visibility and noise, makes
it a powerful tool for autonomous underwater vehicles.
The extensive results on the URPC2020 and TrashCan
datasets demonstrate the practical applicability of HAD-Net in
real-world underwater perception tasks, offering a lightweight
and deployable solution for AUVs.

IV. CONCLUSION

In this paper, HAD-Net introduced significant advancements
in underwater object detection by addressing the challenges
of low visibility and noise in underwater environments.
By integrating FDConv and a hybrid attention mechanism,
HAD-Net improved adaptability across multiple dimensions,
resulting in robust feature extraction and enhanced
performance in both accuracy and efficiency. Extensive
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experiments conducted on the URPC2020 and TrashCan
[17] datasets have validated the exceptional performance of
HAD-Net, outperforming existing state-of-the-art techniques
by achieving higher detection accuracy while maintaining
real-time processing capabilities. This renders HAD-Net
a lightweight and highly deployable solution for AUVs,
pushing the boundaries of underwater perception and paving
the way for advanced real-world applications. Future work
will integrate underwater robotic applications, exploring
multimodal data such as sonar to enhance model robustness
and detection accuracy in extreme conditions.

ACKNOWLEDGEMENT

This work was supported in part by the Shenzhen
Science and Technology Program under Grant
RCBS20231211090725048, Shenzhen, China, in part
by the GuangDong Basic and Applied Basic Research
Foundation under Grant 2025A1515011007, Guangdong,
China, in part by the High level of special funds under
Grant G03034K003 from Southern University of Science and
Technology, Shenzhen, China.

REFERENCES

[1] H. Yin, S. Guo, A. Li, L. Shi, and M. Liu, “A deep reinforcement
learning-based decentralized hierarchical motion control strategy for
multiple amphibious spherical robot systems with tilting thrusters,” IEEE
Sensors Journal, vol. 24, no. 1, pp. 769–779, 2024.

[2] A. Li, S. Guo, and C. Li, “An improved motion strategy with uncertainty
perception for the underwater robot based on thrust allocation model,”
IEEE Robotics and Automation Letters, vol. 10, no. 1, pp. 64–71, 2025.

[3] X. Hou, H. Xing, S. Guo, H. Shi, and N. Yuan, “Design and
implementation of a model predictive formation tracking control system
for underwater multiple small spherical robots,” Applied Sciences,
vol. 14, no. 1, pp. 294, 2024.

[4] Y. Jia, X. Ye, P. Li, and S. Guo, “Contrastive adaptation on
domain augmentation for generalized zero-shot side-scan sonar image
classification,” IEEE Transactions on Instrumentation and Measurement,
vol. 74, pp. 1–13, 2025.

[5] L. Qiao and W. Zhang, “Trajectory tracking control of auvs via
adaptive fast nonsingular integral terminal sliding mode control,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 2, pp. 1248–1258,
2020.

[6] C. Fabbri, M. J. Islam, and J. Sattar, “Enhancing underwater imagery

learning for underwater image enhancement and beyond,” IEEE
Transactions on Image Processing

Multi-object tracking by using group motion patterns,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Abu Dhabi, United Arab Emirates, pp. 4896–4903,
2024.

using generative adversarial networks,” in Proceedings of the 2018
IEEE International Conference on Robotics and Automation (ICRA),
brisbane, Australia, pp. 7159–7165, 2018.

[7] X. Xu, W. Ren, G. Sun, H. Ji, Y. Gao, and H. Liu, “Grouptrack:

[8] R. Liu, Z. Jiang, S. Yang, and X. Fan, “Twin adversarial contrastive

, vol. 31, pp. 4922–4936, 2022.
[9] O. A. Aguirre-Castro, E. E. Garcı́a-Guerrero, O. R. López-Bonilla,
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